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250 Course on Surface Science (Fall 1999)

Miquel Salmeron

Lawrence Berkeley National Laboratory

Topics to be covered:

Ch.1 Thermodynamics of surfaces

The surface tension concept. Droplets and bub-bles

Microscopic wetting theories. Shape of droplets

Equilibrium shape of crystals. Wulff’s theorem

Faceting of non-vicinal surfaces

Roughening transition

Premelting

Ch.2 Experimental topics:  Ultra High Vacuum (UHV). Gas collisions, mean free

path. Preparation of surfaces: polishing, sputtering, annealing.

Electrochemistry. Chemical preparation.

Ch.3 Surface tools and spectroscopies:

Composition: Auger, XPS, Ion Scattering, TPD, SIMS

Ch.4 Crystallography: LEED, Grazing X-rays, Photoelectron diffraction, forward

focusing, etc.

Ch.5 Electronic structure: Photoelectron ARUPS, NEXAFS

Ch.6 Vibrations and Phonons: IR, HREELS, He scattering, Raman, SFG

Ch.7 Real space techniques: STM. Principles, local electronic structure.

Ch.8 Real space techniques: AFM. Principle. Contact and non-contact

operating modes.
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Other chapters: semiconductor surfaces and interfaces, atomic manipulation,

crystal growth, catalysis (chemisorption), environmental science.

Books and papers:

Physics at Surfaces Zangwill (Cambridge)

Physical Chemistry of Surfaces Adamson (Wiley)

Intermolecular and Surface Forces Israelachvili (Academic Press)

Volume 5 of Landau and Lifshitz

Surface Forces B.V. Derjaguin, N.V. Churaev and V.M. Muller.  Plenum

Statistical Physics of Crystal Growth Yukio Saito, World Scientific

….. more to be added …………….
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Ch. 1 THERMODYNAMICS OF SURFACES

M. Salmeron

Lawrence Berkeley National Laboratory

1. Review of thermodynamics

a) Principles

•  First principle (only reversible processes will be considered.): WUQ δδδ +=

(δ symbols meaning non-exact differentials), Q heat, W mechanical or other

work.

•  Second principle: 
T

Q
S

δδ =  (for reversible processes; > for irreversible ones)

•  Together they lead to the fundamental relation:

WVpUST δδδδ ++=  (1)

δ W stands for any other work performed by the system.

The additivity principle (if the system doubles its size, or its extensive

parameters, the energy doubles also), implies that the energy U(N,V,S) is an

homogeneous function of the first order:

U(λN, λV, λS) = λU(N,V,S)

This leads to the Euler equation, obtained by differentiating this

expression with respect to λ, then making λ = 1, integrating and using the third

principle S(T=0) = 0:

U = µN - pV + TS (Euler eq.)

Where µ = ∂U/∂N ; p = - ∂U/∂V; and T = ∂U/∂S, are the three conjugate variables

of N, V and T, the normal variables of the energy, as a thermodynamic potential.

The differential of Euler eq. together with the fundamental eq. (1), leads to

the Gibbs-Duheim equation:

SdT –Vdp +Ndµ = 0 (2)
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b) Thermodynamic potentials

The most common thermodynamic potentials are, in differential and

integral form (repeated indices meaning summation over all types of particles):

Energy U(S,V,Nj): dU = TdS – pdV + µjdNj U = TS – pV + µjNj

Helmholtz free energy F(T,V, Nj): dF = -SdT – pdV + µjdNj F = U –TS = µjNj - pV

Gibbs free energy G(T, p, Nj): dG = - SdT + Vdp + µjdNj G = U –TS +pV = µjNj

Omega potential Ω(T, V, µj): dΩ = -SdT – pdV -Njdµj Ω = F –G =  -pV

When should we use one potential or another?  Any potential can be used

to define equilibrium, by the condition of minimum (first derivative = 0, second

>0). However it is best to use the potential whose natural variables remain

constant. For example, Ω(T, V, µj) is to be used in open systems (with V and T

constant), where Nj varies but where µj stays constant.

2. Surface tension

The surface tension γ is defined as the work done to reversibly create a

unit area of surface between two phases:

dW = γ dA (3)

A = surface area. The term γA (which is similar to the –pV term), should be

added to the thermodynamic potentials defined above when there is a surface.

The useful thermodynamic potential here is Ω, since in creating a surface

at constant T and V, the other variables can change: p, for curved surfaces and

Nj, the number of particles. However in equilibrium µ will stay constant.  In such a

process:

dΩ = γ dA (4)
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3. Definition of the surface of single substance

In general the properties of the particles in a medium change as they get

close to the interface between two phases. This happens over a region with

dimensions equal to the range of interaction forces, inside each phase. In this

surface region the properties change from those of bulk phase 1 to bulk phase 2.

Arbitrarily three regions can be defined: bulk 1, bulk 2 and surface, with volumes

V1, V2, and Vs such that of course V = V1 + V2 + Vs. Similarly, any other

magnitude such as energy will be written U = U1 + U2 + Us, etc.   However,

following Gibbs, the surface can be defined mathematically as the plane

separating phase 1 and 2 of the same substance, such that:

(i) V = V1 + V2, (with Vs = 0); and

(ii) n1V1 + n2V2 = N, where n1 = density of particles in phase 1 and n2 =

density of particles in phase 2.

By definition, there are no particles at the surface: Ns = 0. This choice is

no longer possible with more than one component, for example in solutions, as

we shall see later.

At T and µ constant, we have: Ω =  Ωv + γ A

where Ωv is the sum of Ω1 and Ω2. The surface entropy is:

dT

d
A

T
S s

s

γ
.−=

∂
Ω∂−= (5)

Surface region

Phase 1

Equal volumes

Gibbs surface

Phase 2
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The derivative is total instead of partial because γ does not depend on µ,

because Ωs does not depend on µ either. This is because of our choice of the

surface, with Ns = -∂Ωs/∂µ = 0.

The free energy F = Ω + µN, has a surface part Fs = γ A, because again Ns

= 0.The energy to create a surface is:

Us = Fs + TSs = (γ -Tdγ/dT).A (6)

The heat adsorbed to create the surface is:

Q = T(Ss2 –Ss1) = -T.dγ/dT.(A2 –A1) (7)

4. Surface of heterogeneous systems: solutions

We can define the surface as before with respect to the solvent:

V = V1 + V2, and  N1 + N2 = N, with Ns = 0

with capital N’s standing for solvent number of molecules.  However, once this

choice is made there is no more freedom left and in general we cannot make N’s

= 0, (primed letters referring to the solute).  So we will have N’s = N’ – N’vol, where

N’vol represents the extrapolated number of solute molecules assuming the bulk

densities propagate up to the mathematical surface. If N’s > 0 we talk of positive

adsorption, and negative if N’s < 0.  Now Ωs and γ, depend on two variables: T

and µ’, the solute chemical potential. We have then:

N’s = -∂Ωs /∂µ’ = -A. (∂γ /∂µ’)T (8)

In principle the derivative is to be taken along the phase equilibrium line, where

the pressure is also changing; however, since the liquid is hardly affected by this,
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we can ignore the condition and assume p = constant. Since µ’ depends on the

concentration, so does γ.

N’s =  -A. (∂γ /∂c) T.(∂c/∂µ’)T (9)

Since  (∂c/∂µ’)T > 0 always, we obtain the result that substances that increase the

surface tension show negative adsorption while those that decrease γ, segregate.

This result is quite intuitive.  If the solution is diluted, the dependence of µ’ on c is

of the form:

µ’ = µ’0 + kT.log c (10)

so that (∂c/∂µ’)T = c/kT, and N’s =  -Ac/kT. (∂γ /∂c) T (11)

The change of γ with c, for diluted solutions is γ = γ0 + γ1.c + … One obtains then

the interesting result:

 γ0 - γ = θ.No.kT (12)

where θ is the surface coverage N’s/ (NoA), No being the surface atom density

(~1015/cm2, for a solid or liquid).

5. Strong electrolites (ionic solutions)

Because of their charge, ions in solution experience

two potentials as they approach the surface. One is from

the electrostatic force due to the image charge.  This force

is repulsive for ions in water, with air on the other side,

since water is dielectrically denser.  The other term is from

the electrostatic forces due to all other ions in the solution:

)(.
4)1(

1
22

xez
x

ze
E j

j
j φ

εε
ε +×

+
−= (13)
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Charge neutrality implies that cjzj = 0 (sum of charges of each species times

concentration). e2 ≡ qe
2/(4πεo), in SI units.

Exercise: find the order of magnitude of Ej

With this energy we can calculate the density distribution. From Boltzman

statistics, the concentration near the surface differs from the bulk value cj by the

factor exp(-Ej/kT) ≈ 1-Ej/kT, since the energy Ej is very small. So the surface

excess of component j is:

∫
∞

−=
0, )(

.

.
dxxE

kTv

cA
N j

j
jS (14)

v is the molecular volume of the solvent so that A.dx/v is the number of solvent

molecules, which multiplied by cj gives the number of solute molecules.

To calculate the surface tension, we use the Gibbs-Duheim expression

(2), with p and T constants (we have to add Adγ to (2)):

Adγ + N’S,jdµ’j = 0

together with the assumption of dilute solution, which means µ’j = µ’j,0 + kTlog cj

So we have:

Adγ = -kTN’S,jdcj/cj (reminder: repeated indices = summation)

Substituting the expression for N’S,j:

∫
∞

=
0

)(
1

dxxEdc
v

d jjγ (15)

[this can also be obtained directly by comparing the expression for N’S,j with (11)].

In the expression for Ej(x), the last term disappears after summation, due

to charge neutrality.  The integration should be carried out between a lower limit
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distance of atomic dimensions from the surface (aj), and an upper limit of the

order of the Debye length, λD,j.  One obtains:

)(log
).1(4

)1( 2,
2

jj
j

jD czd
av

e
d

λ
εε

εγ
+

−= (16)

Since λ-1
D,j ∝  jj cz2 , this differential equation can be integrated to give:

kk

jj
jj cz

bz
cz

v

e
2

2
2

2

0 log
)1(8

)1( ×
+

−=−
εε

εγγ (17)

where the bj’s are constants.

The surface tension of a strong electrolite always increases, since b >> c.

This can be seen by evaluating the constants: Debye length λD,j = 
jce

kT
28π

 so

that, at RT, one gets:  bj ~ 2.3x1018 m-3/2, which is very large compared with the

highest possible density (a solid) [csolid ]
1/2 ~ 3.5x1014 m-3/2.

6. Droplets and bubbles: nucleation

When a vapor is cooled down, eventually the pressure will become

saturating and droplets of the liquid phase will condense.  If a liquid is heated, at

some point bubbles will form. These phenomena result in the creation of a

surface that costs energy and this can delay the

formation of nuclei. The vapor will be supercooled and

the liquid superheated. Preexisting nuclei (dust, ions,

surfaces) may provide this initial nuclei.

Lets consider two phases 1 and 2, separated

by a surface of area A, in equilibrium. Since µ and T

are constant, we use the Omega potential:

Ω = -p1V1 –p2V2 + γA (18)



10

Since V1 + V2 = constant,  dΩ = -(p1 –p2)dV1 + γdA  = 0, since we are in

equilibrium. For a planar surface this means p1 = p2, since dA = 0.

For curved surfaces, like in a droplet, the pressures are not the same

because in moving the curved surface, it changes dimensions and energy (γ) is

spent. However, µ1(p1,T) = µ2(p2,T).  Since V1 = 4/3πr3, and A = 4πr2, we obtain:

p1 –p2 = 2γ/r (19)

This is the classical formula of capillary phenomena.  r is negative for

bubbles. The increase (or decrease) in pressure due to γ is called Laplace

pressure. If instead of a droplet we have a cylinder or any other shape

characterized by local curvature radii r1 and r2, the formula is:

p1 –p2 = γ(1/r1 + 1/r2) (20)

One of these could be negative, like in the neck of

the figure. In this case:

p1 –p2 = γ(1/r1 - 1/r2) (21)

Exercise: calculate the force due to the Laplace pressure as a result of capillary

condensation around a tip in contact with a surface (assume perfect wetting).

Answer: since r1 >> r2, ∆p = -γ / r2 and F = ∆p×area = -4πγR, where R is the tip

radius.

Next we want to calculate the difference between these pressures and the

equilibrium pressure over a flat surface, po, i.e., the saturation vapor pressure.

2r2

2r1
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We start with µ1(p1,T) = µ2(p2,T) and the relations µ(p,T) = µ(po,T) + kTlog(p/p0).

For the vapor in equilibrium with the flat surface we also have µ1(p0,T) = µ2(p0,T).

Combining we get:

µ1(p1,T) - µ1(p0,T) = µ2(p2,T) - µ2(p0,T) (22)

and for small differences in pressure, by series expansion and using the equality:

v = -∂µ/∂p, we get:

v1δp1 = v2δp2, (23)

where δpj ≡ pj –p0. Since δp1 - δp2 = 2γ/r, substituting we obtain:

rvv

v

r
p

γγδ 22

12

2
1 ≈

−
⋅= , since v2 p v1 (24)

  
2

1

12

1
2

22

v

v

rvv

v

r
p ⋅≈

−
⋅= γγδ

Using the perfect gas equation: pV = NkT, we have v2 = kT/p2 l kT/p0, so:

kTr

pv
p liq

vap
02γ

δ = (25)

which gives the increase in vapor pressure over a spherical droplet, relative to

that on the flat surface.  Therefore, if there is a collection of droplets, there can

be no equilibrium. The big ones will grow at the expense of the small ones, since

these would require higher vapor pressure around them. This is akin to the so

called Ostwald ripening.

For very small droplets, we cannot use the approximation v1δp1 = v2δp2,

since δp2 can become quite large. We then need to use the unexpanded form of

µ(p,T) = µ(po,T) + kTlog(p/p0).  With this we get:
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rkT

v

p

p liqvapor γ2
log

0

= (26)

Example: for water γ = 73 mJ/m2.  At RT, the increase of the vapor pressure over

a droplet of r = 1000 Å is 1% of the po.  If the radius is 100 Å, the increase is

10%, and if r = 10 Å, it increases by a factor 2.7!  That is why condensation will

not occur even if equilibrium dictates it should (supercooling).  This is the

problem of nucleation.

Let’s consider the energy cost of nucleating a drop (or bubble) out of

equilibrium, (µ1 ≠ µ2) as a result of a fluctuation. The free energy will increase by

the amount:

∆F = ∆Ω + ∆µN = γA + (µ1 - µ2)N = 4πr2γ + (µ1 - µ2)4/3πr3/vliq (28)

If µ1 > µ2, then of course no condensation can

occur.  If the vapor is supersaturated, then µ1 <

µ2, and the cubic term is negative.  The graph

looks like:

A density fluctuation must generate a

nucleus of radius larger than rc to nucleate a

drop.  Differentiating we find:

rc = 2γvliq/(µ2 - µ1) (29)

7. Macroscopic capillarity phenomena

The surface tension of liquids has familiar consequences on the contact

geometry between liquids and solids or other liquids.  In the absence of contact,

the free liquid adopts a spherical shape, since this minimizes the area and thus

the surface energy (drops and bubbles).  If the surface tension of the liquid-vapor

interface (γ) is smaller than the difference between that of the solid-vapor (γsv)

and the solid-liquid (γsl), then the liquid is said to wet the surface and a flat film

r

∆F

cr
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will forms, because γ + γsl < γsv. If the sum is larger, energy is minimized by

forming droplets that only partially cover the surface. The quantity S = γsv - γsl - γ

is called the spreading coefficient. For S>0, the liquid spreads flat. For S<0,

droplets form that adopt spherical-cap shapes, with a contact angle ϕ.

The value of ϕ is determined by the condition of mechanical equilibrium of line

forces (the contact line does not advance or recede). Since the forces are

tangent to the corresponding interface planes and perpendicular to the line, we

have:

γsv = γ. cosϕ + γ-
sl (30)

This is called the Young equation. For shallow droplets, (small contact angles) it

can be rewritten as:  S = -1/2γϕ2. We will use this expression later on.

The same result can be obtained by minimizing the total free energy as a

function of droplet shape at constant volume. The minimization also shows that

the shape is a spherical cap.  This is of course neglecting other forces, in

particular gravity.  We shall come back to this subject later on.

The phenomena that are connected with the surface tension are called

capillary phenomena. They include the above mentioned contact angle, as well

as the capillary raise or depression of liquids in narrow tubes against gravity

forces, capillary waves, etc. Many of these manifestations have been used to

experimentally determine the value of γ.

Exercise: consider a cylindrically-shaped liquid body (a water jet from a garden

hose for example). Show that the cylinder is unstable against break-up into

droplets of dimension of the order of the initial diameter. Hint: assume a

ϕϕϕϕ
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transversal sinusoidal deformation of the wall of wavelength λ and amplitude a.

The total surface energy (=integral of γdA) decreases for increasing amplitude a,

for the unstable wavelength.

8. Surface forces

In the preceding discussion of the effects of γ, the liquid films or droplets in

contact with a solid or liquid surface were supposed to be macroscopic, or more

precisely thicker than the range of the interaction forces with the surface.  If the

liquid film is very thin, then the energy of a molecule is not saturated since no

other molecules of the same liquid exist beyond the surface.  In other words, the

free energy F (per unit surface), of the liquid in the film is different from that in the

bulk material.  As the film changes thickness, so does F. The thickness (z)

variable has a conjugate one, in complete analogy with the pressure and volume

where p = -∂F/∂V.  So we have a new magnitude Π, for thin films, which is

defined by the relation:

Π = -∂F/∂z (31)

Π is called the disjoining pressure, and has the dimensions of force per unit area.

Π depends on z (in addition to other thermodynamic variables, such as T, etc.).

As the film thickens to macroscopic values, Π obviously goes to zero.  The

disjoining pressure was introduced by Derjaguin, and is an important parameter

to describe wetting phenomena of submicroscopic films.

The surface tension of an interface is a measure of the energy difference

between fully coordinated atoms in the bulk and partially coordinated atoms near

the surface. The forces of interaction between the atoms have a range that

depends on the nature of the forces. For example they can be of very short

range, ~1Å in chemical covalent bonds, or of tens or hundreds of Å in

electrostatic (ionic) type interactions. Electrostatic forces are rarely manifested by

a full Coulombic dependence of the 1/r2 form except very close to the ion,

because of polarization effects, in particular by other ions or dipoles in the
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medium. For example, in ionic solids the field outside the surface decays much

faster that 1/r2 due to the multipole assembly of lattice ions. In solutions, ions of

the opposite charge accumulate in the vicinity of the ions in such a way that the

electric field is shielded, as in the Debye model used above.

a. Dipole-dipole interactions

As an example of the interaction between neutral objects lets consider the

dipole-dipole interaction. It is simple to show that the interaction energy of two

dipoles with dipole moments p1 and p2 forming angles θ1 and θ2 with the line

adjoining them is:

]cossinsincoscos2[
4

.
),,,( 21213

21
21 ϕθθθθ

επ
ϕθθ −−=

r

pp
rE

o

(32)

where ϕ is the angle between the planes through the respective dipoles and

connecting line.  Dipoles with fixed orientations occur only in crystalline polar

molecules.  More often, due to thermal agitation the dipoles rotate quasi

randomly. The average interaction energy in this case can be found by using

Boltzman statistics, where a weight is assigned to each orientation according to

the factor exp(-E(θ1,θ2,ϕ)/kT). We give here just the result of such averaging.

∫∫
∫ Ω

∂
∂−=

Ω

ΩΩ
= Ω−

Ω−

Ω−

de
tde

deE
E kTE

kTE

kTE

/)(

/)(

/)(

log
).(

where t ≡ 1/kT. After integration over the θ’s and ϕ, only the second order term in

the expansion of the exponential (which contains (E/kT)2, assuming E << kT),

gives a non-zero contribution. The thermally averaged energy (keeping r

constant) is:

62

2
2

2
1

)4(3

.
)(

kTr

pp
rE

oεπ
−= (33)
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This is called the Keesom interaction.

Exercise: calculate the order of magnitude of the Keesom interaction for water

molecules.

b. The Van der Waals-London interaction

Another 1/r6 type interaction arises between neutral, non-polar atoms or

molecules, due to “induced” dipoles, which is a purely quantum mechanical

effect. This is the Van der Waals or London interaction.  It is simple to deduce an

expression for this interaction in the semiclassical picture of the Bohr atom. The

electrons are “orbiting” around the nucleus and therefore there is an

instantaneous dipole moment p1 (~Bohr radius x charge). This produces a field

E, that decays as 2p1/r
3. In turn this field polarizes other atoms and induces in

them a dipole p2 = αεoE, α = polarizability. The interaction energy is therefore:

6

2
1

3
21

4

4

4

.2
)(

r

p

r

pp
rE

oo επ
α

επ
−=−= (34)

p1 = ao.e, (Bohr radius times the electron charge).

2

2

ωε
α

m

e

o

= ,  which can be related to the ionization energy by the relation:

oo a

e

).4(2

2

επ
ω =h ; this gives:

( ) ( ) 6
21

62
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62

2

)(44
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r

C

rr
rE

oo

−=
+

−=−=
ωωεπ

ωωαα
επ

ωα hh
(35)

The first equality is for a pair of identical atoms, the second is for dissimilar

atoms.

Exercise: Calculate the order of magnitude of the forces. Using 34 ooaεπα ≈ , one

gets C ~ 3.104 kTRT Å6. So, for molecular distances of a few angstroms (3.56 =

2x103), E~ 10kT.
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The quantum mechanical origin of E appears only through the use of the

Bohr radius and polarizability, which contain Planck’s constant h. A more elegant

deduction of this interaction that brings the quantum effects in a clear way is

given in Kittel’s Solid State Physics book.  The interaction is the result of the

decrease in the zero point energy of the interacting dipoles.

Another remark about the London force is that it assumes infinite

propagation speed of the fields of the interacting dipoles. Since the speed of light

is the maximum speed, it is clear that at sufficiently large distances (r >> c/ν)

there will be a phase lag of more than 180º between the exciting field and

reemitted field (photon) as it reaches the source.  The effect of this is to decrease

the strength of the interaction.  This is the so-called retardation effect. Casimir

and Polder [Phys. Rev. 73, 36 (1948)] showed that retardation leads to a different

distance dependence:  E ~ -Cret/r
7. So the exponent in the power law increased

from 6 to 7 as the distance increases beyond the wavelength of the photons of

freq. ν.

c. The Lifshitz dielectric theory

When going from isolated atoms and molecules to a solid, the London

formula requires modifications. This is because the interaction of many particles

is not linear, i.e., the principle of superposition does not apply. In effect, a particle

interacting with a third one is already influenced by the first particle and therefore

the dipoles are no longer randomly oriented. A complete formulation of the

problem must consider the response of the material as a whole. This is done in

the dielectric theory of Lifshitz, later also developed by others (Mahanty and

Niham, etc.).  The interaction, due to fluctuating electromagnetic fields (photon

exchange) is calculated using Maxwell equations. Therefore the result includes

already the relativistic effects, in particular retardation. The formulas will include

the dielectric function ε(ω) = ε’(ω) + iε’’(ω), where the imaginary part ε’’ is

responsible for the dissipation (absorption) of the propagating electromagnetic
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field. The Kramers-Kronig relation connect ε’(ω) and ε’’(ω).  A corollary of this is

the relation:

∫
∞

+
+=

0 22

)(''2
1)( ω

νω
ωωε

π
νε di

which tells us that ε(iω) is a real quantity of a pure imaginary argument connected

with ε’’(ω).

The deduction of the Lifshitz formula is rather complicated. We give here the

final result. The force between two plane parallel bodies separated by a distance

z is:
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The prime in the summation indicates that the first term (n=0) is to be halved (×

½). 21 xs +−= ε , ε = ε(iω), and νn is a multiple of the infrared frequency

(2πkT/’)n = 4.1013 s-1.n (n=1,2,…), at 300K. In the limit of low temperatures or

very close distances, Lifshitz showed that the summation can be approximated

by an integral ( ∫∑
∞∞

=

=
1

1
v

n

dkT υh ).  The low temperature limit means z<<hc/kT. At

room temperature for example this means z << 50 µm.

Two limits are important. For z << λ, a critical wavelength, the

exponentials increase very fast and the formula simplifies to:

υ
υευε
υευε

π
d

ii

ii

z
zF ∫

∞

++
−−−=

0
21

21
32 ]1)(][1)([

]1)(][1)([

8
)(

h
(37)



19

As we know, the value of ε(iυ) decreases to 1 as υ increases, and for a certain

υo, the higher values do not contribute much to the integral. The wavelength λ is

then ~c/υo. We can see that this produces a z-3 law.

The other extreme is large distances z >> λ.  Now the integration can be

again simplified to give a z-4 dependence, i.e., retardation. The important values

of ε(iυ) are for ε=0, i.e., the static dielectric constant εo. For two identical

dielectrics the formula is:
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where the last term is of order unity (~0.5).

d. Interaction between molecules in a dielectric medium

The interaction between any two molecules 1 and 2, with consideration of the

medium in which they are immersed (and therefore becomes polarized too) has

been presented in a generalized form by McLachlan. The formula is applicable to

permanent dipoles as well (Keesom interaction). The result is:
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where the symbols have similar meaning as before. α(iνn) is the polarizability of

the molecules, and ε3 the dielectric permitivity of the medium.

Lets examine the case of a molecule with a single ionization frequency, νI,

in vacuum. In that case:
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Since for most atoms and molecules νI is in the ultraviolet (~ 10eV) ~ 5.1014 s-1,

we see that α ~ α0, in the infrared and visible part.  For a rotating dipole, with a

characteristic relaxation frequency νrot ~ 1011 s-1, the polarizability is
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p
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+
= (42)

At zero frequency these two formulas combine into the known Debye-Langevin

equation:
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If we introduce these expressions in the McLachlan formula we get:
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for the static or zero frequency contribution.

For ν >0, we replace the summation by an integral, as before. So,
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If we use the simple formula (41) for the polarizability of atoms with one single

frequency (ω1 and ω2), the integral is very simple and gives:
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i.e., the London formula of eqs. (34) and (35).  The calculations can be repeated

for molecules inside a medium. Instead of using the polarizabilities of isolated

molecules, we use the Clausius-Mosotti relation:
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(a1 is the atomic radius).  We get then:
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This can be integrated for simple cases, like the atom with one single

frequency.  Since the integration starts at ν ≥ νn=1, which is an infrared freq., the

dielectric constants can be replaced by their values in the visible. There ε = n2,

where n is the refractive index. The integration gives, in the even simpler case

where all three freqs. (mol. 1 and 2, and medium 3) are the same (= ν0),
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Because usually kT << hν0, the second term dominates.  Another interesting

point is that it shows that in a medium, the Van der Waals force between

molecules can be both attractive, if n1 > n3, or repulsive, if n1 < n3.  This is

because the medium polarizes in such a way that the mediated interaction is

repulsive. In other words, the attraction between molecules 1 and 2 is less that

the attraction between the molecules and the medium.  This is similar to the

image charge being of the same sign (leading to self-repulsion) if the object
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charge is inside a dielectrically dense medium. We will retake this subject in the

next section.

9. The Hamaker constant

In this section we will use a much simpler model to illustrate the origin and

effect of unsaturated forces on the atoms near the

surface. We will assume that particles interact with

each other with -1/r6 forces and that these forces

are additive, an assumption which we know is not

correct. In spite of this, the procedure gives

surprisingly good results. We want in particularly

to analyze the effect of finite film thickness on its

interaction with the surface.  The geometry of our

problem is shown in the figure.  The total energy of

a molecule inside medium 1 is:
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where the first three terms represent the energy due to similar molecules in the

film. The integration starts at r = a, the diameter of a molecule.  The A’s are the

constants in the van der Waals attractive energy terms. The n's are the particle

densities. We use the well-known geometrical formula of the area of a sector

between two parallels in the surface of a sphere:

Area of shaded sector = 2πRh (48)

The result of the integration is:
R
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d
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For z →∞, E1 = 
3

111

3

4

a

Anπ−  which should be the bulk cohesive energy per

molecule of medium 1.  For z > d, similar expressions are obtained:

3
233

3
121

3
121

3
222

3
222

2 6)(66)(63

4

z

An

dz

An

z

An

dz

An

a

An
E

πππππ −
−

−+
−

+−= (50)

and, for z<0:
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To calculate the total energy of the system, we must integrate these

expressions. One obtains:
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The factor 2 is to account for the double counting of pairs.  The integral limits are

not 0 and d, but should exclude the molecular radius (a/2) and d-a/2.  L is a large

distance.  The result is:
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)]()[( 13311112211111 AnAnAnAnnH −+−= π (56)

The other two integrals give:
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the constants have similar meanings:  e3 = energy per u. vol. In medium 3.
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Where: 211212
~ γγγ += and 311313
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The so-called Hamaker constant A is:

)( 23321331122111
2
1

2 AnnAnnAnnAnA +−−= π (65)

It can be shown that: 221112 AAA ≈ , and similarly for A13. The quantity:

1111 An=ν , is related to the index of refraction of medium 1, ν2 = n2A ~refrac.

Index, see last section. There we used the letter n for the index of refraction.
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)).(( 3121
2 ννννπ −−≅A (66)

Special cases:

a) n1 = n3 = 0.  This is the simple case of a free surface.  The energy is simply:

SVeE γ+−= . (we dropped the indices)

We see the meaning of the parameters:
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b) n1 = 0.  Two media (2 & 3) separated by vacuum.
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which is always an attractive force.

Exercise: Orders of magnitude:  A23 is of order ~10-77 Jm6, and the densities are

n ~ 1028 m-3.  Therefore, the Hamaker constant is A ~ 10-19 J ~0.1-1 eV ~4-40 kT.

c) Thin film on a surface (n3 ≈ 0, vapor; solid, s = 2, liquid, l = 1):

212 d

A
SSEE slvol π

γγ −++= (69)

The gamma’s are the solid-liquid and vapor-liquid surface tensions.
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We have the following interesting result that if ν1 > ν2, i.e., if the liquid is optically

denser than the solid, there is attraction between the surfaces. This means that

the film is unstable against collapse (droplet formation) that brings the surfaces

together in parts of the film, and of course far away in others to keep the volume

constant. If on the contrary ν1 < ν2, the film is stable since the two surfaces repel

each other. The film wets the solid surface.  If one considers a solid covered by a

liquid film of the same substance (like in melting), usually νl < νs, so that the melt

wets its solid. In the case where νl > νs, the liquid does not wet its own solid.

However this result is not applicable to water, since the interactions are not

properly described by a Van der Waals formula.

An interesting case is that where there is no forces between surfaces. This

is convenient in AFM applications. A dielectric fluid with this property will

suppress the van der Waals forces between tip and surface.  The condition A =

0, is fulfilled for ν1 = ν2, or ν1 = ν3.  For ν1 in between these two values, there is

repulsion between tip and surface. For ν1 outside the two values, there will be

attraction.

10. Microscopic wetting theories

We are now ready to re-examine the wetting of liquids on solid surfaces

which we described above (section 7) for the macroscopic case where surfaces

and interfaces were characterized by their tensions (γ) alone.  The macroscopic

approach means that the size of the liquid film (thickness) or droplets (height), is

larger than the range of the surface forces (up to ~ 1000 Å).  Below that, the

energy per molecule is not saturated to its bulk value, and if we use the bulk

surface or interface tensions, we must correct for the surface forces.

Surface forces give rise to the concept of disjoining pressure. We have

seen forces originating from Van der Waals interactions that decay as 1/r6. We

have seen that since there are three media involved, the disjoining pressure can

be attractive or repulsive, depending on the value of the dielectric constants.

Other forces besides Van der Waals can also be present, for example chemical

and structural forces due to the short range interaction between molecules and
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between molecules and the substrate, electrostatic forces, “double layer” forces

from solvated ions, hydrophobic and hydrophilic forces due to H-bonds, etc.  A

good discussion of the various surface forces can be found in the book of J.

Israelachvili.

Sufficiently far away from the surface, when most stronger forces have

already decayed, the Van der Waals force always remains. As we have seen, the

potential energy is of the form:
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The disjoining pressure in this case is:
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which can be attractive or repulsive.  The free energy of a surface covered by a

thin film is then:

)()( zPzG sl ++= γγ , (69)

P(z) is a decreasing function of z (in absolute value). In the limit when z→0 we

must have G(0) = γsv , which is the solid-vapor surface tension. Therefore the

limiting value of P(z→0) = S = γsv - γsl - γ , which is the spreading coefficient.

If the solid surface is exposed to a vapor that condenses on its surface, a

term equal to (µl -µv).z /vmol, must be added to G(z). If µl < µv the liquid will always

condense and form a thick film. If µl > µv, a thin film might still form provided that

P>0.

The shape of a thin liquid film on a surface depends on the sign of the two

important magnitudes S and P.  We have seen that if P>0, the liquid-vapor and

the solid-liquid interfaces “repel” each other or the disjoining pressure is positive

(we have to press against the liquid surface to keep it from expanding). If S>0,

the film wants to spread. These two opposing tendencies equilibrate by the
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formation of a flat pancake of thickness, h.  The value of h can be found by

minimization of G at constant liquid volume V:

G(z) = G0 –A.S+A.P(z), (70)

With V = A.z = constant.  Minimization gives:

S = h.Π(h) + P(h) (71)

It is easy to see how to determine h graphically: it is determined from the

tangent of a line through (z=0, S) to the P(z) curve:

The profile of the pancake near its edge can be found by minimization of

G(z) subject to the constraint of constant volume (as will be done below).  The

result is a parabolic shape: z2 =2a(x-xL).

In the case where S<0 and P<0 (A<0), droplets will form with a shape that

can be determined by minimization of:
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subject to the condition that:  ∫=
drop

drzrV ][2π , is constant.  We assumed circular

droplets with very shallow contact angle.  The last term in the expression applies

in the case where the droplet is growing in size due to condensation. We will

assume no growth, i.e., µvapor = µliquid.  The solution of (72) by the method of

Lagrange multipliers requires numerical methods in general.  However, in the

z

S
A/z2

P(z)

h

h
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special case where the droplet shape is very close to a spherical cap, a situation

that is observed in many experimental situations, the following solution for the

contact angle (ϕ ≡ 2h/r) is found:

)](.)(.[
22

0
2 hhhP Π++=

γ
ϕϕ (73)

where ϕ is the contact angle of the droplet of height h and ϕ0 = macroscopic

contact angle.  This simple formula predicts that the contact angle decreases as

h decreases (P, Π<0).  This is to be expected since in this case the surface of the

liquid and the solid “attract” each other, which tends to flatten the drop.

Other interesting cases of wetting occur depending on the signs of S and

P, and its shape. One interesting case is where A<0 and S>0. In this case G(z)

must have a minimum at a certain thickness hm.

If the figure on the left applies, first a flat droplet (pancake) will form with

height hs, if the liquid volume is small enough. This is a stable minimum since the

curvature of the potential is positive a this point. Once this thin pancake covers

the surface completely, a discontinuity will occur and a film of thickness hm will

form. Its thickness will remain constant at hm and any excess liquid will form a

droplet on top. This is called pseudo partial wetting.

If the case of the right figure applies, then, a two-dimensional gas will form

first and then a pancake of thickness hm. After this, droplets will form again on top

of the film.  The contact angle of the droplet on top of its own film is given by γm =

γcosϕ, where γm = γ + hmΠ( hm)+P(hm).  The shape of the foot of the droplet is

now hyperbolic.

hmhs hm
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Another situation is given when the following potential function applies:

The oscillatory nature of P(z) is due to the short range forces: chemical,

and structural. The minima are spaced by the molecular thickness. Stable

minima are found at positions corresponding to layer-by-layer growth.

These and other situations are discussed in detail in various papers by P.

De Gennes and collaborators.  Another discussion on this topic can be found in

volume 5 of Landau.

One topic of active research today is the structure and properties of the

first few molecular layers of liquids near solid walls. For example water near

surfaces both inorganic and biological (membranes, proteins), liquid crystals, etc.

We will come back to this subject later on, in the chapter on scanning probe

microscopies.

11. Equilibrium shape of crystals: Wulf’s theorem

Unlike in the liquid materials we have been studying till now, the surface

tension of crystalline solid materials, depend on the atomic arrangement at the

surface, which depends on the orientation, i.e., on the surface Miller indices.  For

that reason the equilibrium shape of a crystal as it solidifies from a liquid drop,

changes from spherical to polyhedral. Intuitively one expects low surface tension

orientations to be predominant.  This will undoubtedly include the most compact

surfaces, i.e., with low Miller index, since there the number of broken bonds is
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minimal. The first treatment of the problem was by Wulff in 1901. Here is his

theorem:

Consider a crystal polyhedron (broken lines in the figure) delimited by

surfaces Ai, in equilibrium with its vapor. These surfaces are at a distance hI from

the center C. Large surfaces are closer to the center than smaller ones, as

shown in the figure.

In equilibrium we must have:  δΩ = -psδVs -pvδVv + Σi γi δAi = 0

The conditions are: total volume constant: V = Vs +Vv

same chemical potential: µs = µv

uniform temperature: T = constant

The crystal volume is: Vs = ΣI 
3

1 AIhI , so that δVs = 
3

1 Σi [hi δAi + Ai δhi]

From the figure we see also that δVs,i  =  Ai δhi = 
3

1 (hi δAi + Ai δhi) = 
2

1 (hi δAi).

Substituting into δΩ, with δVs = -δVv, we get finally

Σi {
2

1 (-ps +pv)hi +γi) δAi = 0

This should be true for any value of δAi (they are independent variables).

Therefore,

γi / hi = constant (74)

hi

Ai

C
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This is Wulff’s theorem. It implies that the areas of the facets exposed by the

crystal can be obtained by tracing radii in the appropriate direction with a length

proportional to γi and a plane perpendicular to the radius vector. The minimal

polyhedron delimited by the intersection of the innermost planes is the

equilibrium shape.

Although the construction in the previous figure shows flat surfaces

delimiting the crystal polyhedron, it is not obvious that the flat facet under a sharp

cusp (a low Miller index plane) should be delimited by other flat facets, as

indicated in the drawing. In fact the envelope of tangents can be curved:

The shape of γ(n) changes from spherical, when the crystal is liquid

(melted) to one with cusps at the positions of the most stable surfaces, which are

the low Miller index planes. There, the atoms lose the least amount of bonds by

the truncation of the crystal. For example, in an fcc or hcp crystal, the

coordination goes from 12 in the bulk to 9 in the (111) surface, and to 8 in the

(100) surfaces.  The formation of singularities or cusps is due to the discrete

nature of matter, so that when the orientation changes steps are formed. The

interaction between steps determines the nature of the cusp, as we shall see

next.

12. Stability of crystal surfaces: faceting

Wulff’s theorem applies to the equilibrium shape of a crystal, which means

that the kinetic processes of atomic rearrangements are sufficiently fast. This

applies to small crystallites.  A large crystal maybe prepared with a surface not in

the Wulff construction, and yet be kinetically frozen.  So, now we want to
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examine the stability of surfaces towards small deviations of structure. In

particular faceting, where a planar surface decomposes into a hill and valley

structure with the same average orientation:

The sides of the hills should be orientations of higher stability.  The following

treatment, due to N. Cabrera (1962), considers this problem as one similar to the

equilibrium between bulk phases, the phases here being the new facets.

The change of free energy for a volume-conserving transformation where

the surface A changes into A’ is:
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The new surface A’ is described by z = z(x,y)

The vector gradient is perpendicular to it its

components are )1,,(
y

z

x

z

∂
∂−

∂
∂− = (p, q, 1); p

and q are the tangents of the angles. We

define also the vector p in the xy plane with

components (p,q,0).  We have therefore,
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rrr +=++ 221'

Where n’ and n are the unit vectors perpendicular to A’ and A respectively.  The

projected area dB’ is:

dB’ = dA’.cosθ = 
221

'
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(76)

We will work with projected areas and define the surface tension per unit

projected area β.  The relation between γ and β is simply:

x

y
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dB’

n'
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221).()( qppp ++= rr γβ

So, instead of (75) we write:

BpdBp
A

).(')'(
'

vr ββ −=∆Ω ∫ (78)

Before proceeding, lets consider the shape of γ(p) or β(p).  The most stable

surfaces are the compact, low Miller index planes, since there the number of

broken bonds is minimum. Small deviations from these are called vicinal

surfaces. They consist of terraces of the low Miller index plane, separated by

steps, usually one atom high. The angle θ ≈ tanθ = p (for small values) is equal to

a/L, where a=step height (~ 2 Å) and L = terrace width. The number of steps per

unit area is 1/L.  For small θ, the steps are far away from each other and do not

interact and the energy is a linear function of the step density. The energy per

unit area is:

00 ....)( βββ >++≈ pJp
rr

(79)

where J  is the energy per unit step length (which depends on p).  The important

thing is that (79) expresses the fact that around low Miller index surfaces, the

function β(p,q) has a conical cusp singularity. Such stable surfaces are called

singular surfaces. They include the (111) and (100) planes of fcc materials, the

(110) of bcc and the basal, or (0001) planes of hcp. The function β(p,q) looks

something like the graph:
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Three cusps have been drawn for three hypothetical singular surfaces.  Outside

the singularity, β(p,q) can be expanded:

...
2

1
)()'(

2

2

+







∂
∂+⋅

∂
∂+= p

p
pp

p
pp

r
r

vr
r

rr δβδδβββ (80)

The third term in (80) is a quadratic form of second order. It can be diagonalized

by a transformation of the axis along its eigenvectors:
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The eigenvectors point in the direction of the principal axis (principal curvatures)

and the eigenvalues are the local curvatures λ1 and λ2.  With this transformation

of coordinates, (80) becomes:
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Upon substitution into (78) the first term in (80) cancels and the integration of the

second term is zero because of conservation of the average orientation:

β

p

q

(p1, q1)
(p0, 0)
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So, finally we obtain:
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This tells us that if the curvatures are positive (λ1 >0, λ2>0) the surface is stable,

since any change leads to an increase in Ω.  If either λ1 or λ2 is negative, the new

orientation is unstable. This

means that such a surface will

decompose into two or more

stable surfaces. This situation is

akin to an unstable volume phase

that will break up into two or three

phases. Each one of these phases must

by itself be stable to break-up into a hill

and valley structure, so that the principal

curvatures of β should be positive. Lets

examine a few cases:

a) Coexistence of a singular facet with a

non-singular facet. We take origin in

the singular facet (p=q=0), and we chose the p axis along the new orientation

(p1, 0). The conditions of conservation of projected area and of same initial

and final contour (see figure) are:

B1 = B1’+B2’, and B1p1 = B1‘p1’ (83)

Stable unstable

cusp

β

p

unstable stable



37

Therefore 11110 ).(').'(').0( BpBpB βββ −+=∆Ω , where p1’ = p1+δp1

Expanding in series: ...).(
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Substituting and regrouping we find:
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The stability conditions are: δΩ = 0,  and  δ2Ω > 0. The first is satisfied if:

1
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The second is satisfied automatically because we assumed positive curvature.

Equation (86) indicates that the slope of β at point p1 must be the same as that of

the straight line passing through p0 and p1.  Graphically this means:

p0

p1

p1’
1/2Bo’

1/2Bo’

B1

B1’

B1p1

cusp

β

p1

unstable stable

p0
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b) Coexistence of two non-singular facets. Again, the two facets must be stable

on their own (positive curvature of β).

Similar boundary conditions as before apply:

Conservation of projected area: B1+ B2 = B1’+ B2’,

and contour: B1p1+ B2p2 = B1’p1’+ B2’p2’

One proceeds in a similar way as before: expand β(p1’) and  β(p2’) around

p1 and p2, use the boundary conditions to eliminate the B’ and one gets a lengthy

expression for ∆Ω with linear and quadratic terms in the δp’s. These linear terms

must be zero in equilibrium. In this manner one gets:
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which expresses the geometrical condition that the tangents to β at p1 and p2,

must coincide with the line joining these points.

We thus see that in both of the two cases discussed, the facets resulting

from the break-up of an unstable orientation can be obtained by imagining a

plane tangent to the β(p,q) surface from below.  Since only three points are

p1

p1’ p2’

p2

cusp

β

p2

unstable

p1
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needed to define a plane, we arrive at the interesting conclusion that only three

facets can be produced upon faceting of an unstable surface.

Free energy or potential of a faceted structure

After an unstable orientation p with projected area B has given rise to

facets p1 and p2, with projected area B1 and B2, the potential of the new structure

can be easily obtained from the boundary conditions:

B = B1+ B2 and Bp = B1p1+ B2p2
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which  is the equation of the line joining the facets.  This line (or plane) goes

under the curve β in the unstable areas.  The amount or area of each facet

follows the lever rule as in the case of phases in equilibrium.

13. The roughening transition

The ad-atom-vacancy Jackson model

In addition to faceting, the break-up of an unstable surface into a hill-and-

valley structure of stable facets, other surface modifications take place, even on

the stable surfaces. One of these is the roughening transition. Roughening

means the formation of vacancies and ad-atoms, steps etc. on an initially flat

surface as a result of increases in temperature.  The formation of such defects

costs energy since bonds must be broken an coordination is lost on average.

This increase in energy of the system is counteracted by an increase of entropy

due to disorder. At sufficiently high temperature, the free energy may in fact

decrease.  At this point the surface becomes rough and this defines the

roughening transition.  To treat the problem theoretically one must know the

hamiltonian, i.e., one must have a model for the energy. The situation is not

simple due to the many types of disorder one must consider.  In practice many
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treatments are based on the use of numerical simulation methods, like the Monte

Carlo method.  Here we present two simple models to capture the essential

physics of the problem.  Jackson used a mean field approximation in the so-

called solid-on-solid model (SOS). In the SOS model the solid consists of lattice

of cells containing the atoms (like blocks). The cells can be occupied or empty.

The interface with the vacuum is said to be sharp if above it only a few cells are

occupied (ad-atoms). It is also sharp if only a few vacancies are present.  This is

the case at low temperatures. However at sufficiently high temperature, many

surface cells are empty and the position of the surface is unclear.  Lets say that

Ns cells of the surface are occupied and 1-Ns are empty. If zs represents the

coordination number and J the energy to break a bond, then the energy E of the

system is: number of sites (Ns) x probability that a neighboring site is empty (1-N/

Ns)zs x J

E = Jzs(1-Ns/N)Ns (89)

The entropy S is the logarithm of the number of configurations W = N!/Ns!(N-Ns)!

Using Sterling’s approximation for the factorial of large numbers:

S = klnW ≈ k[NlnN – NslnNs –(N-Ns)ln(N-Ns)]

The free energy is: F = E-TS. Introducing the coverage θ = Ns/N, one obtains:

F(θ) = JzNθ(1-θ) + kTN{θlnθ + (1-θ)ln(1-θ)} (90)

The graph of F(θ) looks like:

0                  1

F(θ)

T decreasing



41

At low temperature F has two minima, one close to θ = 0 and the other close to θ

=1. The surface is well defined, with either a few ad-atoms, or a few vacancies.

As the temperature increases the minima move closer to the center and, at the

roughening transition TR, only one minimum exist at the center, i.e., at θ = 0.5.

The surface is now undefined (rough). The value of TR can be found easily by

differentiation. One gets:

TR = zJ/2k (91)

Jackson defined a parameter α = TR/TM, where TM is the melting temperature. If

α <1 the surface roughens before melting, if α >1, it never roughens.

The Jackson model is equivalent to then Ising modle of ferromagnetism. The

thermodynamics of the Ising system is well known.  The specific heat for

example shows a logarithmic divergence at TR. The model however is too simple,

since the surface site occupation is always either 0 or 1, and on the surface is

always flat. A really rough surface should not remain flat, and the heights of

distant points should be uncorrelated such that a divergence sets in.

The step model

Another interesting model of surface roughening is in terms of generation

of steps. The surface is modeled by the so-called terrace-step-kink model (TSK).

In the mean field approximation, lets consider a step of perimeter L forming a

loop on the surface.  If J is the energy of an atom at the step, the energy is JL/a,

where a is the length of an atom at the step. The entropy of the step can be

approximately found as follows. It zs are the number of possible step orientations

(= coordination number), the first one atom segment of the step can take zs

possible orientations, the second zs-1 since it is not allowed to go back on itself,

the third has also zs-1 possibilities. For L/a atoms of the step the total number of

possibilities is (zs-1)L/a, and the entropy is S =kln(zs-1)L/a = kL/aln(zs-1). The free

energy is then:
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F(L) = [J-kTln((zs-1)]L/a (92)

The roughening transition is:

TR = J/kln((zs-1) (93)

If T < TR the free energy is positive and therefore is minimized for L = 0. For T >

TR the F(L) decreases when L→∞, i.e., the surface roughens.

A better treatment is to consider the roughening of a step as a result of the

thermal production of kinks that deform its shape. Lets say that an originally

straight step becomes rough, as shown in the figure:

And lets Jx and Jy denote the energy to break a bond in the x and y directions

respectively. The total energy for a step of length L is therefore:
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The number [y(i)-y(i-1)]/a can take the values –1, 0, and 1.  Therefore the

partition function Z is:
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and the free energy per unit step length is:

y

xi i+1

yi

yi+1

a



43



















+−=−=

−
kT

J

y

x

ekTJ
aL

ZkT
21ln

1lnσ (96)

The probability of having a kink at any site is:
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If Jx and Jy were the same, then the roughening transition occurs at the

temperature where the free energy of a step becomes zero:  TR = J/kln2. This is

of the same type as the previous ones (see eqs. 91 and 93).

All these previous simple models are within the mean field approximation.

Fluctuations are not considered. However, in order to understand the roughening

transition correctly fluctuations must be considered.  There are several methods

to do this, including the variational method and the renormalization group theory

method.  The treatment is rather involved and we will not be pursued here. Only

the result will be stated:

The surface is described (in the SOS model) by the height at each surface

cell h(r).  Below the roughening transition temperature TR the interface is flat and

the height fluctuations are such that the height correlation of two points at  a

distance r:

G(r) ≡ 〈 (h(r+ro) –h(ro))2〉 (98)

is finite.  At or above TR however, the interface is rough and G diverges as r→∞.

The renormalization group theory produces a logarithmic divergence. Below TR

the height differences fluctuate logarithmically only at short distances, below a

correlation length ξ, but remain finite above ξ:

G(r) ~ ln(r) for r < ξ and G(r) ~ ln(ξ) for r > ξ (99)
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The correlation length diverges at TR as:

TT

C

Re −∝ξ (100)

At this point the energyof a step is σξ which should be of the order kT. Therefore:

TT

C

Re −
−

− ~~ 1ξβ (101)

This singularity is an essential one, since all the derivatives of any order vanish

at TR but there is no divergence in the specific heat.


